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Abstract:

We study the empirical spectral distributions of two sample-covariance-type ma-

trices associated with high-dimensional time series with unit roots. The first

matrix is S = XX ′/T, where X is an n × T data set, with rows represented

by n independent and identically distributed (i.i.d.) copies of T consecutive

observations of a difference-stationary process. The second matrix is W =

n
∫ 1

0
Wn (t)Wn (t)′ dt, where Wn (t) is an n-dimensional vector with i.i.d. Brow-

nian motion components. We show that as n and T diverge to infinity pro-

portionally, the two distributions weakly converge to non-random limits. The

limit corresponding to S has a density ϕ(x) that decays as x−3/2 when x→∞.

The limit corresponding to W is a Feller-Pareto distribution. An illustrative

application is provided.
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1. Introduction

High-dimensional sample covariance matrices are fundamental to mod-

ern multivariate analysis. An important summary of such matrices is pro-

vided by the empirical distribution of their eigenvalues (ESD, or empirical

spectral distribution). Graphically, one can associate the ESD with Cattel’s

(1966) scree plot, an effective tool for detecting a low-dimensional structure

in noisy data. When the sample size is much larger than the dimension of

the data, the structure appears in the graph as a small number of eigenval-

ues that form a steep slope above the flat “scree region” resulting from the

remaining “noise eigenvalues.”

In modern applications in which the data dimensionality is non-negligible

relative to the sample size, the sample eigenvalues are much more spread

out than their population counterparts, which obscures the slope-scree divi-

sion (see Johnstone and Paul (2018) for a recent review of related results).

In such situations, one needs a benchmark for the empirical distribution of

the noise eigenvalues. A disagreement of the scree plot with the benchmark

indicates the presence of the structure (see Luo et al. (2017) and Melkiev

et al. (2018) for recent applications).
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A natural benchmark for the ESD of the noise is its limiting version

(LSD, or limiting spectral distribution) when the dimensionality and the

sample size diverge to infinity proportionally. For example, when the noise

is independent and identically distributed (i.i.d.) and has a finite second

moment, the corresponding LSD is the Marchenko-Pastur distribution (see

Theorem 3.6 in Bai and Silverstein (2010)).

There are many extensions of this result to correlated noise. Typically,

the LSD is described using its Stieltjes transform (see Section 2), which, in

turn, is characterized as a solution to a functional equation. In time series

settings, such extensions have been obtained by Jin et al. (2009), Burda

et al. (2010), Pfaffel and Schlemm (2011), Yao (2012), and Merlevède

and Peligrad (2016), among others. However, none of these extensions can

handle time series data with unit roots. The goal of this study is to fill in

this gap.

Stochastically trending unit-root data are widespread in economics and

finance. Here, principal components analyses in high-dimensional settings

have attracted much recent attention from both applied and theoretical

researchers (see, e.g., Bai and Ng (2004), Engel et al. (2015), Banerjee

et al. (2017), and Barigozzi et al. (2018)). The decision on how many

principal components to retain for an “adequate” data description is based
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on the eigenvalues of the sample covariance matrix or the scree plot. Zhang

et al. (2018) and Onatski and Wang (2018) analyzed a few of the largest

eigenvalues of the sample covariance of nonstationary data. In this study,

we derive the limit of the empirical distribution of all the eigenvalues, that

is, the LSD.

We consider two different settings. In the first setting, the data are

represented by an n×T matrix X, the columns of which Xt satisfy the first

difference equation Xt −Xt−1 = εt, with the entries of the vector εt given

by i.i.d. copies of a linear process. The corresponding sample covariance

matrix is

S ≡XX ′/T.

In the second setting, the n-dimensional data Wn(t) are continuous over

time t ∈ [0, 1]. The entries of vector Wn(t) are i.i.d. copies of the standard

Brownian motion. The corresponding sample covariance is

W ≡ n

∫ 1

0

Wn(t)Wn(t)′dt.

Here, the multiplication by n ensures the compatibility of the matrices

S and W . Indeed, under suitable assumptions (e.g., Phillips and Solo

(1992)) as T →∞, while n remains fixed, the probability limit of (n/T )S

is proportional to W . When n and T are growing proportionally, both S
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and W have spectral norms of order O (n2) . (Of course, the growth in T is

relevant only to S.)

We establish the existence of the LSD for the matrix S, and show that

its Stieltjes transform satisfies an equation similar to that obtained in the

literature in the context of stationary data. A novel feature of this LSD is

the unboundedness of its support from the right. In particular, we prove

that the LSD has a density ϕ(x) that behaves as x−3/2 for x→∞. Because

xϕ(x) is not integrable, we conclude that for any fixed δ > 0, the portion

of the data variation absorbed by the first δn principal components almost

surely (a.s.) approaches 100% as n and T diverge to infinity proportionally.

In other words, a number of principal components equals to any percentage

(however small) of the data size eventually explains all the variation in the

data.

For the matrix W , we obtain a much sharper and somewhat surprising

result. Specifically, the density of its LSD is equal to

ψ(x) =
1

2πx2

√
x− 1/16, x > 1/16. (1.1)

If we denote the random variable with the above distribution as ξ, then

(16ξ)−1 follows a beta B(1/2, 3/2) distribution. Therefore, ξ is a Feller-

Pareto random variable (e.g., Arnold (2015)).

The rest of the paper is organized as follows. In Sections 2 and 3, we
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obtain the results for matrices S and W , respectively. Several Monte Carlo

experiments are conducted in Section 4. Section 5 illustrates the theoretical

results using financial data. Section 6 concludes the paper. All technical

proofs are given in the Supplementary Material and the Appendix.

2. Matrix S

Let

zt =
∞∑
k=0

θkut−k, (2.1)

where ut, for t ∈ Z, are i.i.d. Further, let εt, for t ∈ Z, be an n-dimensional

process that consists of n independent copies of the process zt. Finally, let

Xt = X0 +
t∑

j=1

εj, (2.2)

with an arbitrary X0.

Denote the n × T matrices with tth columns Xt and εt as X and ε,

respectively. Let U be a T -dimensional upper-triangular matrix of ones,

and let l be a T -dimensional vector of ones. Then,

X = X0l
′ + εU .

We are interested in the asymptotic behaviour of the ESD of the sample

covariance matrix of X, that is, of the matrix

S ≡
(
X − X̄

) (
X − X̄

)′
/T = εUMU ′ε′/T,

Statistica Sinica: Preprint 
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where M is the projector matrix on the space orthogonal to l. We consider

the asymptotic regime where n, T →∞ such that n/T → c ∈ (0,∞), which

we abbreviate as n, T →c ∞.

Remark 1. For S = XX ′/T, we have rank (S− S) ≤ 1. Therefore, by

Theorem A.43 of Bai and Silverstein (2010), the LSDs of S and S are

equivalent (if they exist).

Denote the eigenvalues of S as λ1 ≥ ... ≥ λn. Let Fn,T be the ESD of S

with the cumulative distribution function (CDF)

Fn,T (λ) =
1

n

n∑
j=1

1 {λj ≤ λ} ,

where 1 {·} denotes the indicator function. Below, we show that as n, T →c

∞, Fn,T a.s. weakly converges to a non-random distribution F.

Recall that the Stieltjes transform of F at z ∈ C+ (the upper half of

the complex plane) is defined as

m(z) =

∫
1

x− z
dF(x).

The distribution F can be uniquely recovered from its Stieltjes transform.

Moreover, if limz→x=m(z) = mx exists, the distribution F has density at

x equal to mx/π (e.g., Theorem B.8 of Bai and Silverstein (2010)).

Assumption A1. The innovations ut are i.i.d., with Eut = 0, Eu2
t = 1,

and Eu4
t <∞.

Statistica Sinica: Preprint 
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Assumption A2. The linear filter in (2.1) is not identically zero and

is absolutely summable; that is, 0 <
∑∞

k=0 |θk| <∞.

These assumptions yield, in particular, the continuity on ω ∈ [0, 2π] of

the spectral density of zt,

f (ω) =
1

2π

∣∣∣∣∣
∞∑
k=0

θke
ikω

∣∣∣∣∣
2

.

Because zt satisfies (2.1), it is also true that it is a linearly regular process

(i.e., it does not contain a perfectly linearly predictable component); hence,

f (ω) > 0 almost everywhere on [0, 2π] . There may, however, exist a subset

of [0, 2π] of zero Lebesgue measure, where f (ω) = 0.

Let H be a Borel measure on [0,∞) defined as follows. For any Borel

set E ⊆ [0,∞) ,

H (E) =
1

2π
µ

(
ω ∈ (0, 2π) :

πf (ω)

1− cosω
∈ E

)
,

where µ (·) is the Lebesgue measure.

In the Appendix, we obtain the following theorem on the limiting ESD

of S.

Theorem 1. Suppose that assumptions A1 and A2 hold. Then, as n, T →c

∞, the ESD of S a.s. weakly converges to a distribution function F(x), such

that, for any z ∈ C+, its Stieltjes transform m ≡ m(z) is a unique in C+

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0046



2. MATRIX S9

solution to the equation

z = − 1

m
+

∫ ∞
0

xdH (x)

1 + cxm
,

which is equivalent to the equation

z = − 1

m
+

1

2π

∫ 2π

0

dω

(1− cosω) (πf (ω))−1 + cm
. (2.3)

Theorem 1 can be viewed as a generalization of Theorem 1 of Yao (2012)

to difference-stationary processes. Our assumptions for the differenced pro-

cess εt = Xt − Xt−1 match Yao’s assumptions for stationary data. Yao’s

theorem is a special case of Theorem 1, where the process zt has an MA

unit root that “cancels” the unit root in the integrated version of zt.

Recently, Merlevède and Peligrad (2016) extended Yao’s (2012) theo-

rem in a different direction. They showed that the theorem holds for regular

stationary stochastic processes with arbitrarily slowly decaying autocovari-

ances. In particular, long-range dependent stationary processes that have

a spectral density unbounded at zero are allowed. However, an essential

requirement of Merlevède and Peligrad (2016) is the boundedness of the

second moment of the data. This assumption is violated for time series

with a unit root which we handle in Theorem 1. Whether and how our as-

sumptions can be relaxed is an interesting question left for future research.

Theorem 1 is not explicit about the properties of the limiting spectral
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distribution F. To analyze F, we assume, following Yao (2012), that the

spectral density f (ω) is bounded away from zero. In addition, we require

that f(ω) has a continuous derivative in a neighborhood of ω = 0.

Assumption A3. f (ω) 6= 0 for ω ∈ [0, 2π] . In addition, f(ω) has a

continuous derivative in a neighborhood of ω = 0.

Using the results of Silverstein and Choi (1995), it is fairly straightfor-

ward to show that, under Assumption A3, the support of F contains an

interval that is unbounded from the right (x0,∞). The existence of the

density ϕ(x) on this interval follows from Theorem 1.1 of Silverstein and

Choi (1995). That theorem, combined with our Theorem 1, implies that

πϕ (x) is equal to the imaginary part of the unique m from the upper half

of the complex plane satisfying

x = − 1

m
+

∫
xdH (x)

1 + cxm
,

or, equivalently,

x = − 1

m
+

1

π

∫ π

0

dω

(1− cosω) (πf (ω))−1 + cm
. (2.4)

In the Appendix, we study the solution of (2.4) in detail, and obtain the

following theorem.

Theorem 2. Under assumptions A1, A2, and A3, the limiting spectral

distribution F has a density ϕ(x) on (x0,∞) for some x0 > 0. The density
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satisfies the following equation:

ϕ(x) =

√
f(0)

2πc
x−3/2 (1 + o(1)) ,

as x→∞.

3. Matrix W

The goal of this section is to prove (1.1). The idea of the proof is to

approximate W using the sample covariance matrix of an n-dimensional

random walk of large length T . Then, use Theorem 1 to characterize the

LSD of the approximation as n/T → c > 0. Finally, show that the LSD of

W can be obtained by sending c to zero.

Let ηt be an i.i.d. N(0, In) vector, η = [η1, · · · , ηT ], and U be a T -

dimensional upper-triangular matrix of ones. Further, let X = ηU be

an n × T matrix with rows that are independent Gaussian random walks.

Let Sn,T = XX ′/T be the sample covariance matrix of the random walk.

As T → ∞ while n is held fixed, XX ′/T 2 converges in distribution to∫ 1

0
Wn(t)Wn(t)′dt; thus, it is natural to approximate W using (n/T )Sn,T .

Denote the empirical spectral distribution function of (n/T )Sn,T as

F
n
T
Sn,T (x). Then, Theorem 1 yields the following corollary.

Corollary 1. As n, T →c ∞ with c ∈ (0,∞) , F
n
T
Sn,T (x) a.s. weakly con-
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verges to a distribution Fc, the Stieltjes transform of which, mc ≡ mc(z),

satisfies the following cubic equation:

(zmc + 1)2 (c2mc + 4
)
−mc = 0. (3.1)

Because the approximation of W using (n/T )Sn,T becomes exact when

T →∞, heuristically, we expect to obtain the Stieltjes transform m0 of the

limiting spectral distribution of W as a solution to (3.1) with c set to zero.

That is, we expect

m0 = 4 (zm0 + 1)2 .

Employing the inversion formula for Stieltjes transforms (e.g., Theorem B.8

in Bai and Silverstein (2010)), we obtain the density stated in (1.1). To

show how this heuristic argument can be formalized, we prove the following

theorem in the Appendix.

Theorem 3. As n → ∞, the empirical distribution of the eigenvalues of

W weakly converges in probability to a distribution F0 with density

ψ(x) =
1

2πx2

√
x− 1/16, x > 1/16.

4. Monte Carlo

In this section, we conduct Monte Carlo experiments on (1.1). Each ex-

periment is based on 1000 Monte Carlo replications. Three underlying

Statistica Sinica: Preprint 
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distributions are considered for the simulated data: standard Gaussian,

centered χ2(1)/
√

2, and uniform (−
√

3,
√

3). Here, the scalars
√

2 and
√

3

are introduced to standardize the variances of the data. Data are gener-

ated for (n, T ) = (20, 200) and (n, T ) = (20, 40). In each experiment, the

eigenvalues of

(n/T )Sn,T ≡ nηUU ′η′/T 2

are simulated, with U being a T -dimensional upper-triangular matrix of

ones and η an n × T matrix with i.i.d. entries taking one of the above

three underlying distributions. For each experiment, the empirical CDF

is plotted and then superimposed with the theoretical counterpart based

on (1.1). The results are reported in Figure 1, from which we see that

for various distributions and values of n and T , the empirical distribution

matches the theoretical one well.

5. Illustration

In this section, we illustrate our theoretical results using financial data.

We consider the logarithms of monthly stock prices for 33 North American

companies for the period July 1963 to December 2018. We chose companies

if their stocks were part of the S&P100 index at some point during this

period. Furthermore, we excluded companies with missing data for some of
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Figure 1: Comparison between the Monte Carlo empirical distribution with

the Feller-Pareto distribution.
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the covered months.

To construct the log price time series, we use CRSP data on holding

period returns without dividends (RETX variable). For the initial period,

we set the stock prices equal to the PRC variable, which is the stock price

for the last trading day of the month. Then, we construct the price series for

the remaining time periods sequentially by multiplying the previous month’s

price by 1 + RETX. The prices obtained in this way are automatically

adjusted for distribution events such as stock splits. Finally, we take the

logarithm of the constructed series.

It is a standard assumption in finance that log stock prices follow ran-

dom walks. Had they been independent, the ESD of the corresponding

sample covariance matrix could have been well approximated by the distri-

bution F(x) described in Theorem 1. Before computing the sample covari-

ance, we need to standardize the random walks so that their innovations

have unit standard deviations. Note that the cross-sectional dimension of

our data, n = 33, is an order of magnitude smaller than their time dimen-

sion, T = 666. Hence, we expect that the ESD scaled by n/T is also well

approximated by the Feller-Pareto distribution with density (1.1).

However, as is well known, financial log price series may contain com-

mon factors that correspond to sources of non-diversifiable risk. These
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common factors create cross-sectional dependence between log prices. This

dependence leads to a gap between the ESD and the Feller-Pareto distri-

bution. Such a gap can be easily depicted graphically as follows.

Let X be an n × T matrix of log prices, standardized so that changes

in the log prices have unit standard deviation. Let λ ≡ (λ1, · · · , λn)′ be an

n-dimensional vector of the eigenvalues of nXX′/T 2, sorted in descending

order of magnitude.

Recall that 1/ (16ξ) , where ξ is a Feller-Pareto random variable, is

distributed as beta B (1/2, 3/2) . Let FB (x) be the corresponding CDF.

Had the rows of X been independent, we would have expected the entries of

the vector F−1
B (λ) ≡ (F−1

B (λ1), · · · , F−1
B (λn))′ to be uniformly distributed

on [0, 1] . Then, a plot of these entries against a uniform grid of n points on

[0, 1] would lie on the 45-degree line. A deviation would indicate dependence

between the rows.

Figure 2 shows the plot (circle dots) for our 33 log price series. The

circles lie above the 45-degree line, which means the quantiles of the ESD

are larger than those of the Feller-Pareto distribution. As discussed above,

this discrepancy is expected because different log prices are linked to the

same sources of the non-diversifiable risk.

There is a large body of financial literature on modelling the sources

Statistica Sinica: Preprint 
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Figure 2: Comparison of ESD for financial log price data with the Feller-

Pareto distribution FB. Circles: raw data. Stars: residuals after extracting

five Fama-French factors.
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of non-diversifiable risk. For example, we can do so using the five Fama-

French factors in stock returns (see Fama and French (2015)). The values

of the factors are available on Kenneth R. French’s website. We can use the

above methodology to visually assess the extent to which purging the data

from these factors reduces the amount of cross-sectional dependence.

Specifically, we regress the first-differences of the log prices on the five

factors, take the residuals, standardize them, and accumulate them over

time. The data constructed in this way are free from the factors. The

corresponding plot of the components of F−1
B (λ) against a uniform grid on

[0, 1] is shown in Figure 2 (star dots). As expected, the stars are closer

to the 45-degree line than the circles. However, the discrepancy is not

eliminated. This may be due to some remaining common industry factors.

For example, five out of the 33 companies are pharmaceutical companies.

It may be interesting to further purge the data of commonalities until

the entries of the vector F−1
B (λ) are reasonably uniform over [0, 1] .However,

we feel that our goal of illustrating the above theoretical results has been

achieved, and leave a more thorough investigation of financial data to future,

more specialized research.
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6. Conclusion

We have examined the limiting spectral distributions of sample covariance

matrices of nonstationary time series data. We consider two situations.

First, the data are given by n i.i.d. copies of a difference-stationary pro-

cess. Second, the data are continuous over time, and are represented by n

i.i.d. copies of a standard Brownian motion. In the first case, we show that

the limiting spectral distribution has an unbounded support and a density

ϕ(x) decaying at infinity as x−3/2. In the second case, we show that the lim-

iting spectral distribution is Feller-Pareto. Our analysis of the first situation

extends previous studies (e.g., Jin et al. (2009), Burda et al. (2010), Pfaffel

and Schlemm (2011), Yao (2012), and Merlevède and Peligrad (2016)) to

nonstationary data with unit roots. Our theoretical results are illustrated

using financial data in a quick check of cross-sectional dependence.

Supplementary Material

The online Supplementary Material (SM) provides proofs of Lemmas

1,2,and 3 and the convergence of L (HΓ, H), which is required in the Ap-

pendix.
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Appendix

A.1 Proof of Theorem 1

By the rank inequality (e.g. Theorem A.43 in Bai and Silverstein (2010)),

it is sufficient to prove the a.s. weak convergence of the ESD of εAε′/T,

where A = MUMU ′M . Let Γ be the T × T Toeplitz matrix with entries

Γts = γt−s ≡ Cov (zs, zt) . We have

εAε′/T = ηΓ1/2AΓ1/2η′/T,

where η = εΓ−1/2. Note that Γ must be invertible because zt is assumed

to have a representation (2.1), and thus, it is linearly regular.(Theorem 4.1

on p. 569 of Doob (1953) implies that a linear process cannot be perfectly

predicted from its past, which precludes singularity of Γ. Had there been

a ∈ RT − {0} such that a′Γa = 0, var(a′Z) would have been zero, and a

perfect prediction would be possible, contradicting Theorem 4.1.)

Let L (·, ·) be the Lévy distance between distribution functions. Let

Fn,T (λ) be the ESD function of εAε′/T . Recall that Lévy distance metrizes

the weak convergence. Therefore, it is sufficient to prove that L (Fn,T ,F)→
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0 as T →∞. We will prove this by splitting L (Fn,T ,F) into several parts,

using the triangle inequality (see (A.4) below).

In preparation for the proof, note that A is a circulant matrix (e.g.

Onatski and Wang (2018)). In particular, it has the spectral decomposition

A = F∗diag (0,D)F/T,

where F = {exp (−iωs−1 (t− 1))}Ts,t=1 is the Fourier matrix of order T with

ωs = 2πs/T, and

D =
1

2
diag

(
(1− cosω1)−1 , ..., (1− cosωT−1)−1) .

Note that ‖A‖ = 1
2

(1− cosω1)−1, which is unbounded asymptotically.

To establish the convergence of the ESD of εAε′/T , our strategy is to

approximate A by a matrix Ā with bounded norm such that Theorem 1.1

of Bai and Zhou (2008) can be applied to prove the convergence of the ESD

of εĀε′/T . To this end, for any u > 0, let

cosu ω =


cosω if 1

2
(1− cosω)−1 < u

1− 1/ (2u) otherwise

,

and let D̄ be obtained fromD by replacing cosωs with cosu ωs, s = 1, ..., T−

1. Define

Ā = F∗diag
(
0, D̄

)
F/T.
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It is straightforward to verify that 1
2

(1− cosω)−1 ≤ π2/ (4ω2) for any

ω ∈ [0, π] . Therefore, we may have cosu ωs 6= cosωs only for

s ≤ T/
(
4
√
u
)

or s ≥ T − T/
(
4
√
u
)
.

Hence,

rank
(
A− Ā

)
≤ T/

(
2
√
u
)
. (A.1)

Furthermore, since F/
√
T is a unitary matrix,

∥∥Ā∥∥ ≤ u, (A.2)

where ‖·‖ is the spectral norm.

Now let us consider Γ. Let C be the so-called optimal or Cesàro cir-

culant for matrix Γ. That is, C is a T -dimensional circulant matrix with

entries Cst = cs−t, where c0 = γ0 and

ck =
(T − k) γk + kγk−T

T
, k = 1, ..., T − 1.

In Section S1 of SM, we prove the following lemma.

Lemma 1. Assume that {ut} in (2.1) is a weakly stationary white noise

sequence and that assumption A2 holds. Then, ‖Γ−C‖2
F = o (T ) as T →

∞, where ‖·‖F is the Frobenius norm.

Let HΓ be the ESD of A1/2ΓA1/2, H̄Γ be the ESD of Ā1/2ΓĀ1/2, H̄C

be the ESD of Ā1/2CĀ1/2, and Hu be the distribution such that, for any
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Borel set E ⊆ [0,∞) ,

Hu (E) =
1

2π
µ

(
ω ∈ (0, 2π) :

πf (ω)

1− cosu ω
∈ E

)
.

In the following, we show that HΓ converges to H. Note that HΓ is also

the ESD of A1/2ΓA1/2 because the eigenvalues of the latter matrix coincide

with those of Γ1/2AΓ1/2. By the triangle inequality,

L (HΓ, H) ≤ L
(
HΓ, H̄Γ

)
+ L

(
H̄Γ, H̄C

)
+ L

(
H̄C , Hu

)
+ L (Hu, H) .

In Section S2 of SM, we prove that each term on the right hand side con-

verges to zero.

Let F̄n,T (λ) be the ESD function of εĀε′/T ≡ ηΓ1/2ĀΓ1/2η′/T. In

Section S3 of SM, we prove the following lemma.

Lemma 2. For each u > 0, F̄n,T a.s. weakly converges to a distribution Fu

with the Stieltjes transform mu ≡ mu(z) equal to the unique solution in C+

of the equation

z = − 1

mu

+

∫ ∞
0

xdHu (x)

1 + cxmu

,

as n, T →c ∞.

Since, as follows from Lemma 2 and (S2.7) of SM, F̄n,T a.s. weakly

converge to F as T, u→∞, we must have

L (Fu,F) = o(1) as u→∞. (A.3)
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By the triangle inequality,

L (Fn,T ,F) ≤ L
(
Fn,T , F̄n,T

)
+ L

(
F̄n,T , Fu

)
+ L (Fu,F) . (A.4)

By the rank inequality, L
(
Fn,T , F̄n,T

)
≤ 1/ (2

√
u) . This fact, Lemma 2 and

(A.3) imply Theorem 1.

A.2 Proof of Theorem 2

Consider a sequence xj, j = 1, 2, ... with xj ∈ (x0,∞) and xj → ∞ as

j →∞. Let mj be the corresponding sequence of the solutions from C+ of

equation (2.4). Let

b = max
ω∈[0,2π]

(1− cosω) (πf (ω))−1 <∞.

For any δ > 0 and all sufficiently large j, we must have < (mj) ∈ [−δ− b, δ]

and = (mj) ∈ [0, δ] . Otherwise, there would exist a subsequence along which

the right hand side of equation (2.4) remains bounded whereas the left hand

side diverges to infinity. Since [−δ−b, δ]× [0, δ] is compact, there must exist

a convergent subsequence, which we will also denote as mj, slightly abusing

notation. Note that limj→∞= (mj) = 0. Let us denote limj→∞< (mj) as

m̄. We will now show that m̄ = 0.

First, since δ is an arbitrary positive number, m̄ ≤ 0. Suppose that
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m̄ < 0. The real and imaginary parts of equation (2.4) yield

xj =
1

π

∫ π

0

(1− cosω) (πf (ω))−1 dω∣∣(1− cosω) (πf (ω))−1 + cmj

∣∣2 , (A.5)

0 =
1

|mj|2
− c

π

∫ π

0

dω∣∣(1− cosω) (πf (ω))−1 + cmj

∣∣2 . (A.6)

Since
∣∣(1− cosω) (πf (ω))−1

∣∣ ≤ b, we must have

xj ≤
b

π

∫ π

0

dω∣∣(1− cosω) (πf (ω))−1 + cmj

∣∣2 =
b

c |mj|2
→ b

cm̄2
<∞

which contradicts the fact that xj →∞. Hence, limj→∞mj = 0.

Let ω̄ ∈ (0, π) be such that f ′ (ω) exists on [0, ω̄] , and

d

dω

(
1− cosω

f (ω)

)
=

sinω (f(ω)− tan (ω/2) f ′(ω))

f 2(ω)
6= 0

for any ω ∈ (0, ω̄] . The existence of such ω̄ follows from Assumption A3.

Let us split the domain of the integration in the integral in (2.4) so that∫ π

0

dω

(1− cosω) (πf (ω))−1 + cmj

=

∫ ω̄

0

...+

∫ π

ω̄

... ≡ I1 + I2.

Since (1− cosω) (πf (ω))−1 is bounded away from zero on [ω̄, π] , we have

|I2| = O(1) (A.7)

as j →∞.

Let t = (1− cosω) / (cπf (ω)) . Then

I1 =
1

c

∫ q

0

(
φ (t) /

√
t
)

dt

t+mj

,
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where q = (1− cos ω̄) / (cπf (ω̄)) , φ (t) is continuously differentiable on

[0, q] , and φ (0) =
√
cπf(0)/2. Such integrals are well studied in mathemat-

ical literature and are called the integrals of Cauchy type. By Proposition

II on p. 75 of Muskhelishvili (1968),

I1 =
πφ (0)

cm
1/2
j

+ I10 =
π
√
cπf(0)/2

cm
1/2
j

+ I10, (A.8)

where I10 is a holomorphic function of mj in a neighborhood of 0, cut along

the positive real semi-axis. Moreover,

|I10| <
C

|mj|α
(A.9)

for some α < 1/2 and C > 0.

Using (A.7), (A.8), and (A.9) in (2.4) yields

xj = − 1

mj

+

√
cπf(0)/2

cm
1/2
j

+O(1) +O
(
|mj|−α

)
, (A.10)

where α < 1/2. Let mj = rj exp {iϕj} with ϕj ∈ (0, π) . The real and the

imaginary parts of the equation (A.10) are

xj = −r−1
j cosϕj +

√
πf(0)

2c
r
−1/2
j cos (ϕj/2) +O(1) +O

(
r−αj
)
,(A.11)

0 = r−1
j sinϕj −

√
πf(0)

2c
r
−1/2
j sin (ϕj/2) +O(1) +O

(
r−αj
)
. (A.12)

Since rj → 0 as j →∞, (A.12) implies that

min {ϕj, π − ϕj} → 0.
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On the other hand, equation (A.11) shows that ϕj cannot be close to zero

asymptotically, because then, xj and −r−1
j cosϕj would be of different sign.

Hence,

lim
j→∞

ϕj = π, and rj =
1

xj
+ o

(
1

xj

)
.

Using this in (A.12), we obtain

2xj cos (ϕj/2)−
√
πf(0)

2c
x

1/2
j = o (xj cos (ϕj/2)) + o

(
x

1/2
j

)
,

or, equivalently,

cos (ϕj/2) =
1

4

√
2πf(0)

c
x
−1/2
j + o (cos (ϕj/2)) + o

(
x
−1/2
j

)
,

so that

cos (ϕj/2) =
1

4

√
2πf(0)

c
x
−1/2
j (1 + o(1))

and

= (mj) ≡ rj sinϕj =
1

2

√
2πf(0)

c
x
−3/2
j (1 + o(1)) .

This yields Theorem 2.

A.3 Proof of Corollary 1

The spectral density of ηt equals 1/ (2π) . Therefore, by Theorem 1, FSn,T

a.s. weakly converges to a distribution function F(x) whose Stieltjes trans-
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form m ≡m(z) satisfies

z = − 1

m
+

1

2π

∫ 2π

0

dω

2 (1− cosω) + cm

= − 1

m
+

1

2πi

∮
|s|=1

ds[
2
(
1− s+s−1

2

)
+ cm

]
s

= − 1

m
− 1

2πi

∮
|s|=1

ds

s2 − (cm + 2) s+ 1
.

The integrand has two poles at s1,2 =

(
cm + 2±

√
(cm + 2)2 − 4

)
/2. As

s1s2 = 1, we must have one of them inside the contour and the other outside.

Therefore, we have

z = − 1

m
± 1

s1 − s2

= − 1

m
± 1√

(cm + 2)2 − 4
,

with the choice of + or − determined by which of s1,2 is inside the contour.

Rearranging, we obtain

c

(
z +

1

m

)2

(cm + 4) m− 1 = 0.

On the other hand, we have

mc(z) =

∫
1

x− z
dFc (x) =

∫
1

cx− z
dF (x) =

1

c
m
(z
c

)
.

Substituting this into previous equation completes the proof.
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A.4 Proof of Theorem 3

Let Fn,∞ be the ESD of W . It suffices to show that for any δ > 0, there

exists some n0 such that for any n > n0,

P (L (F0, Fn,∞) < δ) > 1− δ, (A.13)

where L (·, ·) is the Lévy distance. The idea is to introduce “intermediate”

distributions Fγ, Fn,Tγ , and Fn,T∞ such that the Lévy distances L (F0, Fγ) ,

L
(
Fγ, Fn,Tγ

)
, L
(
Fn,Tγ , Fn,T∞

)
, and L (Fn,T∞ , Fn,∞) are small, and then use

the triangle inequality to establish (A.13).

Let Fγ be the limiting spectral distribution of (n/T )Sn,T as p, T →γ ∞.

The Stieltjes transforms of Fγ and of F0 satisfy the cubic equation (3.1) with

c set to γ and to 0, respectively. Note that Fc continuously varies with c.

Therefore, we can choose γ ∈ (0, 1) so small such that

L (F0, Fγ) < δ/4. (A.14)

Next, let Tγ be the smallest integer satisfying n/Tγ ≤ γ, let ηγ be

an n × Tγ matrix with i.i.d. standard normal entries, and let Uγ be the

Tγ-dimensional upper triangular matrix of ones. Note that

Sn,Tγ = ηγUγU
′
γη
′
γ/Tγ,
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and that

(
UγU

′
γ

)−1
=



1 −1 · · ·

−1 2 −1 · · ·

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 2



.

This is a rank one perturbation of

A−1
γ =



2 −1 · · ·

−1 2 −1 · · ·

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 2



,

which has eigenvalues

λk = 2− 2 cos
kπ

Tγ + 1
, k = 1, ..., Tγ.

Let Aγ = Q∆γQ
′ be a spectral decomposition of Aγ. We have

∆γ = diag

((
2− 2 cos

kπ

Tγ + 1

)−1
)
k=1,··· ,Tγ

.

By the invariance of the Gaussianity under orthogonal transformations,

matrix ξγ ≡ ηγQ has i.i.d. N(0, 1) entries. Therefore, up to a low-rank
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perturbation (which can be ignored for the purpose of the analysis of the

LSD), Sn,Tγ is distributed as ξγ∆γξ
′
γ/Tγ.

Define Mn,Tγ = nξγ∆γξ
′
γ/(Tγ + 1)2 and denote the empirical spec-

tral distribution of Mn,Tγ as Fn,Tγ . Then, by Corollary 1, we have Fn,Tγ

a.s. weakly converges to Fγ when n, T →γ ∞. Hence, almost surely,

L
(
Fγ, Fn,Tγ

)
→ 0 as n → ∞ while γ ∈ (0, 1) is kept fixed. Therefore,

there exists nγ such that for any n > nγ,

P
(
L
(
Fγ, Fn,Tγ

)
< δ/4

)
> 1− δ/4. (A.15)

Next, let T∞ > Tγ. For any fixed n, we have L (Fn,T∞ , Fn,∞) → 0 in

probability as T∞ → ∞. It is because Mn,T∞ converges in distribution to

W as T∞ → ∞. Combining this with (A.14) and (A.15) yields: for any

δ > 0, there exists a γδ ∈ (0, 1) s.t. for any positive γ < γδ there is an nγ

s.t. for any n > nγ there is a Tp s.t. for any T∞ > Tp, one has

P
(
L (F0, Fγ) + L

(
Fγ, Fn,Tγ

)
+ L (Fn,T∞ , Fn,∞) < 3δ/4

)
> 1− δ/2.

It only remains to show that, for any δ > 0, there exists a γ̃δ ∈ (0, 1)

s.t. for any positive γ < γ̃δ there is a ñγ s.t. for any n > ñγ and any T̃n

there exists T∞ > T̃n s.t.

P
(
L
(
Fn,Tγ , Fn,T∞

)
< δ/4

)
> 1− δ/2.

The following lemma is proven in Section S4 of SM.
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Lemma 3. For any τ > 0 there exists γτ ∈ (0, 1) s.t. for any positive

γ < γτ , there is a ñγ s.t. for any n > ñγ and any T̃n, there exists T∞ > T̃n

s.t. with probability larger than 1− τ ,

‖Mn,Tγ −Mn,T∞‖ ≤ Kγ,

where K is an absolute constant that does not depend on γ.

By Theorem A.45 of Bai and Silverstein (2010),

L
(
Fn,Tγ , Fn,T∞

)
≤ ‖Mn,Tγ −Mn,T∞‖.

Therefore, given Lemma 3, for any τ > 0 there exists γτ > 0 s.t. for any

positive γ < γτ , there is a ñγ s.t. for any n > ñγ and any T̃n, there exists

T∞ > T̃n s.t.

P
(
L
(
Fn,Tγ , Fn,T∞

)
< Kγ

)
> 1− τ.

Finally, the proof of Theorem 3 is completed with τ = δ/2 and γ̃δ =

min{γτ , δ/(4K)}.
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